49 research outputs found

    Inference propagation engine for belief networks.

    Get PDF
    Due to significant limitations of rule-based extensional decision-support systems researchers are looking for new theories, methods and semantics to efficiently encode causality. Artificial Intelligence community demonstrates significant interest for the approaches based on theory of probability. Graphical model approach offers significant benefits and leans on sound theoretical basement. Paper discusses benefits of Intentional (declarative or model based) vs. Extensional (rule-based or production rules) approaches. Probability Propagation in Trees of Clusters (PPTC) algorithm is one of the most efficient algorithm inspired by generalized distributive law. Paper focuses on details of this recently adapted algorithm. Applet written in Java culminates the research. Algorithm implementation as an applet opens new horizons of system use, since Javaâ„¢ is supported by nearly all platforms nowadays. Optimized inference propagation algorithm was devised based on high-level description of algorithm, making the applet highly fit for real life applications. Object oriented language implementation is beneficial over other approaches, since it makes package reuse simple and handy. Graphical user interface was designed with idea of maximal ease of the applet use. Program can run both in applet mode and as a standalone application. Autonomous on-board computers, enabling intelligence for mobile devices, could run the inference propagation engine which is essential part of newly created software

    Computational prediction of splicing regulatory elements shared by Tetrapoda organisms

    Get PDF
    Background: auxiliary splicing sequences play an important role in ensuring accurate and efficient splicing by promoting or repressing recognition of authentic splice sites. These cis-acting motifs have been termed splicing enhancers and silencers and are located both in introns and exons. They co-evolved into an intricate splicing code together with additional functional constraints, such as tissue-specific and alternative splicing patterns. We used orthologous exons extracted from the University of California Santa Cruz multiple genome alignments of human and 22 Tetrapoda organisms to predict candidate enhancers and silencers that have reproducible and statistically significant bias towards annotated exonic boundaries.Results: a total of 2,546 Tetrapoda enhancers and silencers were clustered into 15 putative core motifs based on their Markov properties. Most of these elements have been identified previously, but 118 putative silencers and 260 enhancers (~15%) were novel. Examination of previously published experimental data for the presence of predicted elements showed that their mutations in 21/23 (91.3%) cases altered the splicing pattern as expected. Predicted intronic motifs flanking 3' and 5' splice sites had higher evolutionary conservation than other sequences within intronic flanks and the intronic enhancers were markedly differed between 3' and 5' intronic flanks.Conclusion: difference in intronic enhancers supporting 5' and 3' splice sites suggests an independent splicing commitment for neighboring exons. Increased evolutionary conservation for ISEs/ISSs within intronic flanks and effect of modulation of predicted elements on splicing suggest functional significance of found elements in splicing regulation. Most of the elements identified were shown to have direct implications in human splicing and therefore could be useful for building computational splicing models in biomedical researc

    A method of precise mRNA/DNA homology-based gene structure prediction

    Get PDF
    BACKGROUND: Accurate and automatic gene finding and structural prediction is a common problem in bioinformatics, and applications need to be capable of handling non-canonical splice sites, micro-exons and partial gene structure predictions that span across several genomic clones. RESULTS: We present a mRNA/DNA homology based gene structure prediction tool, GIGOgene. We use a new affine gap penalty splice-enhanced global alignment algorithm running in linear memory for a high quality annotation of splice sites. Our tool includes a novel algorithm to assemble partial gene structure predictions using interval graphs. GIGOgene exhibited a sensitivity of 99.08% and a specificity of 99.98% on the Genie learning set, and demonstrated a higher quality of gene structural prediction when compared to Sim4, est2genome, Spidey, Galahad and BLAT, including when genes contained micro-exons and non-canonical splice sites. GIGOgene showed an acceptable loss of prediction quality when confronted with a noisy Genie learning set simulating ESTs. CONCLUSION: GIGOgene shows a higher quality of gene structure prediction for mRNA/DNA spliced alignment when compared to other available tools

    A method of precise mRNA/DNA homology-based gene structure prediction

    Get PDF
    Background: Accurate and automatic gene finding and structural prediction is a common problem in bioinformatics, and applications need to be capable of handling non-canonical splice sites, microexons and partial gene structure predictions that span across several genomic clones. Results: We present a mRNA/DNA homology based gene structure prediction tool, GIGOgene. We use a new affine gap penalty splice-enhanced global alignment algorithm running in linear memory for a high quality annotation of splice sites. Our tool includes a novel algorithm to assemble partial gene structure predictions using interval graphs. GIGOgene exhibited a sensitivity of 99.08% and a specificity of 99.98% on the Genie learning set, and demonstrated a higher quality of gene structural prediction when compared to Sim4, est2genome, Spidey, Galahad and BLAT, including when genes contained micro-exons and non-canonical splice sites. GIGOgene showed an acceptable loss of prediction quality when confronted with a noisy Genie learning set simulating ESTs. Conclusion: GIGOgene shows a higher quality of gene structure prediction for mRNA/DNA spliced alignment when compared to other available tools

    Accumulation of GC donor splice signals in mammals

    Get PDF
    The GT dinucleotide in the first two intron positions is the most conserved element of the U2 donor splice signals. However, in a small fraction of donor sites, GT is replaced by GC. A substantial enrichment of GC in donor sites of alternatively spliced genes has been observed previously in human, nematode and Arabidopsis, suggesting that GC signals are important for regulation of alternative splicing. We used parsimony analysis to reconstruct evolution of donor splice sites and inferred 298 GT > GC conversion events compared to 40 GC > GT conversion events in primate and rodent genomes. Thus, there was substantive accumulation of GC donor splice sites during the evolution of mammals. Accumulation of GC sites might have been driven by selection for alternative splicing

    Evolutionary conservation suggests a regulatory function of AUG triplets in 5′-UTRs of eukaryotic genes

    Get PDF
    By comparing sequences of human, mouse and rat orthologous genes, we show that in 5′-untranslated regions (5′-UTRs) of mammalian cDNAs but not in 3′-UTRs or coding sequences, AUG is conserved to a significantly greater extent than any of the other 63 nt triplets. This effect is likely to reflect, primarily, bona fide evolutionary conservation, rather than cDNA annotation artifacts, because the excess of conserved upstream AUGs (uAUGs) is seen in 5′-UTRs containing stop codons in-frame with the start AUG and many of the conserved AUGs are found in different frames, consistent with the location in authentic non-coding sequences. Altogether, conserved uAUGs are present in at least 20–30% of mammalian genes. Qualitatively similar results were obtained by comparison of orthologous genes from different species of the yeast genus Saccharomyces. Together with the observation that mammalian and yeast 5′-UTRs are significantly depleted in overall AUG content, these findings suggest that AUG triplets in 5′-UTRs are subject to the pressure of purifying selection in two opposite directions: the uAUGs that have no specific function tend to be deleterious and get eliminated during evolution, whereas those uAUGs that do serve a function are conserved. Most probably, the principal role of the conserved uAUGs is attenuation of translation at the initiation stage, which is often additionally regulated by alternative splicing in the mammalian 5′-UTRs. Consistent with this hypothesis, we found that open reading frames starting from conserved uAUGs are significantly shorter than those starting from non-conserved uAUGs, possibly, owing to selection for optimization of the level of attenuation

    Evolutionary conservation suggests a regulatory function of AUG triplets in 50 -UTRs of eukaryotic genes

    Get PDF
    By comparing sequences of human, mouse and rat orthologous genes, we show that in 50 -untranslated regions (50 -UTRs) of mammalian cDNAs but not in 30 - UTRs or coding sequences, AUG is conserved to a significantly greater extent than any of the other 63 nt triplets. This effect is likely to reflect, primarily, bona fide evolutionary conservation, rather than cDNA annotation artifacts, because the excess of conserved upstream AUGs (uAUGs) is seen in 50 -UTRs containing stop codons in-frame with the start AUG and many of the conserved AUGs are found in different frames, consistent with the location in authentic non-coding sequences. Altogether, conserved uAUGs are present in at least 20–30% of mammalian genes. Qualitatively similar results were obtained by comparison of orthologous genes from different species of the yeast genus Saccharomyces. Together with the observation that mammalian and yeast 50 -UTRs are significantly depleted in overall AUG content, these findings suggest that AUG triplets in 50 -UTRs are subject to the pressure of purifying selection in two opposite directions: the uAUGs that have no specific function tend to be deleterious and get eliminated during evolution, whereas those uAUGs thatdoserveafunctionareconserved.Mostprobably, the principal role of the conserved uAUGs is attenuation of translation at the initiation stage, which is often additionally regulated by alternative splicing in the mammalian 50 -UTRs. Consistent with this hypothesis, we found that open reading frames starting from conserved uAUGs are significantly shorter than those starting from non-conserved uAUGs, possibly, owing to selection for optimization of the level of attenuation
    corecore